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The problem of the periodic motions of a system with a small parameter is solved. The non-rough cases, when the problem cannot 
be solved by a generating system obtained for a zero value of the small parameter, are investigated. Lyapunov's idea of using a 
new generating system which already contains the small parameter is systematically developed. Systems of general form, inverse 
systems and systems dose to inverse are investigated, © 1998 Elsevier Science Ltd. All rights reserved. 

1. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider a fairly smooth autonomous or 21t-periodic system 

X" " X ( X , I )  "4" ~.X I (~1,, X,~)I, X ~ R m (1.1) 

with a small parameter 11. We will assume that when ~t = 0 the generating system 

x" = xtx, t) (1.2) 
admits of a periodic solution x = ¢p(t), and we will investigate the issue on the existence in system (1.1) 
when IX # 0 of a periodic solution which changes into the solution ~o(t) as I~ ---> 0. 

The formulation of this problem is due to Poincar6 [1], and the main method of solving it is PoincarCs 
method [1, 2], which was initially proposed for problems of celestial mechanics [1] and developed in 
more detail for analytic systems of general form (1.1) [2]. Two cases arise when solving the problem: 
(a) a rough case, when the property of system (1.1) of having a periodic solution is determined solely 
by the generating system, and (b) a non-rough case, when, to solve the problem, it is necessary to consider 
the perturbation IxX1. In systems of the general form (1.1) the Poincar6-isolated case [2] is rough. 

Generating system (1.1) belongs to a certain class K, for example, it is conservative, a Lyapunov system, 
etc. The perturbations are also considered from a certain class P. System (1.2) from class K may be 
rough in the sense of the property of possessing a periodic solution for perturbations from class P1 and 
of being non-rough for perturbations from class P2- The classes K and P are defined by the content of 
the specific problem being investigated. In the theoretical scheme and when solving applied problems 
it is correct to assume a class P identical with the class K, or to assume that the perturbations gX1 are 
of more general form. 

In non-rough cases it is usual to analyse a perturbation of finite order (as a rule, the first) with respect 
to the small parameter [2]. Thereby, one in fact (implicitly) constructs a new generating system, already 
containing the small parameter. The idea of choosing such a generating system (in Hill's problem) is 
due to Lyapunov [3], but was not subsequently developed. Lyapunov's approach, in well-known cases, 
leads to the same results as Poincar6's method. This approach turns out to be preferable when analysing 
a number of non-rough cases, in particular, for oscillatory systems of standard form. This enables us 
to formulate the conditions for a periodic solution to exist in a form assumed in averaging methods. 

We will formulate the problem of the systematic development of Lyapunov's idea in the problem of 
periodic solutions of a system with a small parameter in non-rough cases. We will consider systems of 
general form, inverse systems and systems close to inverse. 

2. T H E  C H O I C E  OF G E N E R A T I N G  SYSTEM 

Consider the autonomous or 2n-periodic system 

tPrikL Mat. MelOk Vol. 62, No. 3, pp. 355-371, 1998. 
*This paper  commemorates  the 140th anniversary of the birth of A.M. Lyapunov. 

325 



326 V.N. Tkhai 

x" = X(e,x,t)+llXt(e,  Ix, x,t), x e R m (2.1) 

with two small parameters e and Ix. We will assume that when Ix = 0 system (2.1) allows of a 2T*(e)- 
periodic solution x = q~(e, t), q~(e, 0) = x* (T*(e) = ~ for 2x-periodic system (2.1)). We will investigate 
in which class of functions Ix = Ix(e) the problem of the existence in (2.1) of a periodic motion can be 
solved by the generating system obtained from (2.1) with Ix = 0. The problem of choosing the generating 
system which contains the small parameter is thereby obviously solved. 

We will denote by x(e, Ix, x] . . . . .  x~,, t) the solution of system (2.1) with initial conditions x] . . . . .  
x~. Then, the necessary and sufficient conditions for 2T-periodicity of the solution (T -- ~ for a 2n- 
periodic system) have the form 

Xs(e, Ix, x ~ . . . . .  x ~ , 2 T ) -  x* s = 0 (s = 1 .. . . .  m) (2.2) 

and consist of a system of m functional equations in x ] , . . . ,  x~, (and T in the case of an autonomous 
system). This system is compatible for Ix = 0 and has a solution x ° = x*, T = T*. Hence, introducing 
the increments Ax ° = x ° -x* ,  AT = T -  T*, system (2.2) can be represented in the form 

o t o ]~ [F,~(e)+ Fs/lAx j +[G; (e )+G,  IAT +IxwsCe, II, Ax , a T )  = 0 (s = I ..... m) 
j=l 

(2.3) 

The functions F~/and G, depend on e, Ax °, AT and vanish when Ax ° = 0, AT = 0. 

1. A periodic system. Here AT = 0. When rank II F*j(O) II = m we have the rough case with respect 
to e and Ix, while the solution x = q~(0, t) of system (2.1) when e = Ix = 0 is continued with respect to 
the parameters e and Ix [2]. 

Consider the non-rough cases when rank II F~'i (0) II --- rn - k (k > 0). Here, without loss of generality, 
we will assume that 

F,~(e)=e[a~+~(e)] (a=l ..... k), ax;=~, (s=z ..... m) 

where aa/is independent of e and F~j(O) = 0. Then, system (2.3) takes the form 

j=l 

~'. [F~pi(e)+Fpjf£,e~)]~j+ ~Fp(e, Ix,~)=O (l~=k+l ..... m) 
j=l 

(2.4) 

If Ix= O(e2+°), ~ > 0, system (2.4) with e = 0 has a unique solution es = 0 (s = 1 . . . . .  m) provided 
that 

a~  
ranklF ~ (0)1-- m (2.5) 

When condition (2.5) is satisfied, system (2.4) is also compatible for sufficiently small e # 0, where 
= O(e °) (s = 1 . . . .  , m), if Ws(0, 0, 0) ~ 0 (s = 1 . . . .  , m). Hence, in general, we have z~ ° = o(el+°). 
Similar discussions also hold in the case when the non-degeneracy of the matrix II F~j(e) II is verified 

by terms of order e v inclusive. 

Theorem 1. Suppose a 2~-periodic solution exists in  the 2g-periodic system (2.1) when IX = 0. 
Then, in any class of functions IX = O(e2v+°), o > 0, system (2.1) also has a 2It-periodic solution if 
rank II F~*j(e) II -- m, and this condition is verified by Taylor polynomials of order v for the functions 
F~j (e). Here the initial conditions for periodic solutions when Ix --- 0 and ix # 0 differ by a quantity of 
the order of e v+°. 

The case rank II F~j(O) II = m - k arises, in particular, when the solution x = q~(0, t) belongs to the 
k-family, i.e. system (2.1) when e = IX = 0 allows of a k-family of 2~-periodic solutions. In this case the 
functions Faj(a  = 1 . . . .  , k) in (2.3) vanish together with e. Hence, system (2.3) is solvable for the weaker 
condition Ix = O(el+°), o > O. 
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Theorem 2. Suppose a 2g-periodic solution x = q~(e, t) exists in the 2g-periodic system (2.1) when 
tx = 0, which when e = 0 belongs to a certain family. Then, in any class of functions IX = O(el+°), 
o > 0, system (2.1) also has a 2~-periodic solution, if rank U F~*y(e) II = m, and this condition is verified 
taking into account terms in the matrix II F~*j(e) II that are in linear in e. Here  the  initial conditions for 
periodic motions when IX = 0 and Ix # 0 differ by a quantity of the order  of e". 

2. The autonomous system. In this case AT may be non-zero, and when analysing the compatibility 
of system (2.3) the matrix II F*i(e) II must be replaced by the matrix Jl F*j(e), G*~(e) Jl. 

Theorem 3. Suppose a 2T*-periodic solution exists in autonomous system (2.1) when IX = 0. Then, 
in any class of functions tx = O(e2v+°), a > 0, system (2.1) also has a 2T(e)-periodic solution provided 
rank II F*j (e), G*(e) [I = m, and this condition is verified by Taylor polynomials of order v for the functions 
F~.(e), G*(e). In this case the initial conditions for periodic solutions when Ix = 0 and Ix # 0 differ by 
a quantity of the order  of  e ~+° like their periods. If here rank Jl F*y (e) II = m, then when ~t # 0 in system 
(2.1) a 2T*(e)-periodic solution also necessarily exists. 

Similarly, as also in the periodic system, there is an important special case. 

Theorem 4. Suppose a 2T*-periodic solution x ~ ~(~,  t) exists in the autonomous system (2.1) when 
IX = 0, which belongs to a certain family when --,,.. Then, in any class of functions IX = O(el+°), 
o > 0, system (2.1) also has a 2T(e)-periodic solution, provided that rank II F~j(e) II = m, and this 
condition is verified taking into account terms in the matrix II F*~j(e), G*(e) II that are linear in e. In this 
case the initial conditions for periodic motions when IX = 0 and IX # 0 differ by a quantity of the order  
of O(e°), the same as their periods. If, in this case rank II F*/(E) U = m, then when IX ~ 0 a 2T*(e)- 
periodic solution also necessarily exist in the system. 

Notes. 1. It is obvious that the conditions of Theorems 1--4 guarantee the uniqueness of the periodic solution of 
system (2.1) when ta = 0 for each e ~ 0; the generating system obtained from (2.1) when ~t = 0 is rough. A Poincar6- 
isolated case occurs in system (2.1) with one small parameter ~t. 

2. In Theorems 1--4 one does not need to know the periodic solution of system (2.1) when ~t = 0; it is sufficient 
to construct the periodic solution with accuracy e v. 

3. Constructively, the conditions rank II F*j(e) II --- m, rank II F*/(e), G';(e) II = m are verified by calculating (with 
the necessary accuracy with respect to e) the characteristic exponents of the system of equations in variations in 
the neighbourhood of the solution x = ~(e, t) of system (2.1) when ~t = 0. 

4. In the autonomous case (Theorems 2 and 4) it is assumed that the family is defined not only by an arbitrary 
constant added in the solution to time. 

3. A S Y S T E M  OF S T A N D A R D  F O R M  

We will assume that the generating system 

x" = X ( E , x , t ) ,  x ~ R "  (3 .1)  

obtained from (2.•) with IX = 0, allows of a family of k parametersA1 . . . .  , Ak (k ~< m) of periodic 
solutions when e = 0, where rank II ~x~/0Ay II = k. We will choose as the new variables of the problem 
Ya = Aa, zl~(o~ = 1 , . . . ,  k; 13 = k + 1 . . . . .  m) so that the transformations (xa, xl~ ) ---> (ya, YI0 is non- 
degenerate. For example, we can retain the variables Xl~ as the variables z~. Then, as a rule, we arrive 
at the problem of the periodic motions of a system of standard form 

y" = eY(e, y, z, t) + IxYl(e, IX, y, z, t) 

z" = Zo(y, z, t) + F.Z(e, y, z, t) + IXZI(e, IX, y, z, t) 
(3.2) 

which is of independent  interest. 
Note that in the case of autonomous system (2.1), among the p a r a m e t e r s A 1 , . . . ,  Ak there is no 

arbitrary constant added in the solution to t, and in  the case when the period depends o n A 1 , . . .  ,A~, 
by introducing a new independent variable we arrive at a periodic system of the form (3.2) with a period 
which is independent  of  these constants. 

We will investigate the following system, which is more general than (3.2) 
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Y~ - ~P* Ya (~, Y, z,  t) + Ixa (l't)Yl,, (£, St, Y, l ,  t) ( a  = 1 ..... k)  

z~=Zoll(y,z,t)+F.Y'_~(g,y,z,t)+llZill(~,Ix, y , z , t  ) (13 = k + l  ..... m) 
(3.3) 

(p~ ~ N, IXa(0) -- 0, a = 1 , . . . ,  k) with right-hand sides that are 2g-periodic in t, assuming that the 
system 

=ZolI(A,z,t), A=const (~=k+l ..... m) (3.4) 

allows of a 2n-periodic solution z = ~o(A, t). 
The necessary and sufficient conditions for the solution of system (3.3) to be 27r-periodic have the 

form 

y~(e, lx, y°,z°,2g)-y~ =o (a= 1 ..... k) 

z~(e, Ix, y°,zo,2x)-~=0 (13=k+l ..... ,n) 
(3.5) 

(y°, z ° are the initial conditions for y and z, respectively), where the, first group of equations in (3.5) is 
satisfied identically for y*, z ° when e = 0, Ix = 0. Hence, taking into account the proportionality of the 
rate of change of  the variable ya to the quantity e pa, we can write system (3.5) in the form 

~a(y° ,z°)+~icz(~,y° ,z°)+ IxctE-Pafa(E, Ix, y°,z° ) = 0 ( a  = 1 ..... k) 
(3.6) 

13p(y°,z°)+~ip(E,y°,z°)+ixga(E, ix, y° ,z°)  = 0 (~ = k +  I ..... m) 

where the functions ~la(E, yO, Zo), ~l~(e,  yO, z o) vanish when e = 0. Hence it follows that by choosing 
= o(eP~), Ix = o(E) as e --* 0, system (3.6) is compatible for sufficiently small e # 0, if solutions of 

the system of equations 

~a (yO, z o)  = 0, Tiff ( y O  zo ) __ 0 ( a  = 1 . . . . .  k; ~ = k + 1 . . . . .  m) (3.7) 

exist and are simple. 
The second group of  equations in (3.7) for any y° = A allows of a solution z ° = ~o(A, 0). Hence, the 

problem of finding the roots of Eqs (3.7) leads to the compatibility of the system 

~ . ( A , ~ ( A , 0 ) )  = 0 ( a  = 1 . . . . .  k)  (3.8)  

The functions ~ in (3.8) are determined by integrating the system of differential equations 

~'a = Ya(O,A,~°(A,t), t) (or = I ..... k) 

in the interval [0, 2~]. Consequently, the roots of Eqs (3.8) are calculated from the system of amplitude 
equations 

2z 
la(A) = [ Fa(O,A,~o(A,t) , t )dt  = 0 (a  = 1 . . . . .  k) (3.9) 

0 

A unique solution of (3.6) corresponds to each simple root A* of these equations, which satisfy the 
condition detll Orlld~y~ll * 0 when y° = A*, z ° = ~o(A*, 0) for sufficiently small e # 0. We have thereby 
proved the existence of 2re-periodic motions in system (3.3). These motions are described by the formulae 

t 
y,, = A~ + ~ J  Fct(O,A*o~o(A*,t),t)dt +o(e  t~)  (ct = 1 . . . . .  k)  

0 

= q~l~(A*,t)+ O(e) (l~ = k + 1 ..... m) (3.10) 

Theorem 5. To each simple root A* of the amplitude equation (3.9), for which equations in variations 
for system (3.4) when A = A* do not have roots of the characteristic equation equal to unity, there 
corresponds a unique 2~-periodic solution of system (3.3), if ga =o(eP~), IX = o(e) and e --> 0. 
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Notes. 1. When the right-hand sides of system (3.3) are 2g-periodic in the variable.Zl+l . . . . .  zm(l >! k), 
Theorem 5 also establishes the existence of rotational motions, 2g-periodic on R x " r "  (T m-~ is a torus of dimension 
m - / ) .  For such motions the solution z = ¢(A, t) satisfies the conditions 

¢#i(A,t + 2x)  = cPi(A,t), ¢~ j ( A , t  + 2z)-q~ j (A , t )  f O(mod210 

( i = k + l  ..... l ; j = l + l , . . . m )  

2. Theorem 5 allows of an extension to the case when Eq. (3.4), for fixed values p of the parameters 
A1 = A'~ . . . . .  Ap = A~ and arbitrary values of the remaining parameters Ap+l . . . . .  Ak, allows of a family of 
B1 . . . . .  Bp 2g-periodic solutions z = ~(A ~ . . . . .  A'p, Ap+ 1 . . . . .  At ,  B1 . . . . .  Bp, t). 

Corollary. To each s imple  roo t  A* of  the ampl i tude  equa t ion  

2g 

I(A)- ~ Y(O,A,t)dt=O (3.11) 
0 

of  the 2x-per iodic  sys tem 

y"--~tY(g,y,t), y e R  m 

there  cor responds ,  for  sufficient small  ~t ~ 0 a unique 2~-per iodic  solution 

I 

y = A* + ~tf Y(O, A , t)dt + o(~t) 
0 

of  system (3.12). 

(3.12) 

Example. A quasilinear system with one degree of freedom. 
1. The autonomous system 

x "  + m2x = l lF(l l ,x ,x ');  m = const > 0 (3.13) 

When la = 0 we have a family of 2~¢o-periodic with respect to t solutions x = Acos~p that is single-parametric 
fromA. We change to the Van der Pol variablesA and ~0. As a result we obtain a system which we can write in the 
form of a single equation 

dA = _ p. F(~,Acosg,-Acosincp)sincp 

d{p o~ {o-g(alA) -1F(lx,Acos~,-Ao~sin~)cosr# 

with a right-hand side that is 2~-periodic in ¢p. From the corollary of Theorem 5 we derive the following [2]: to 
each simple root A* of the amplitude equation 

2~ 
F ( O, A eos q~,-A o~ sin ~ ) sin qwl~ = 0 

0 

there corresponds a unique solution, 2n-periodic in q~ 

9 
A = A* +gS F(0, Acos{p, -A~sintp)sinq}dq~+o(ll) 

0 

de m l.t,~ = - " ~ ' 0  F(O,A cos 9, - A¢~ sin q0eos ¢d9 + o(11) 

of Eq. (3.13). 
2. A periodic system with a principal resonance 

x'" +¢~2x = IIF(Ix, x , x ' , t ) ,  F ( l l , x , x ' , t + 2 x )  = FOt ,x ,x ' , t ) ,  to 2 = l - g a  (3.14) 

When ~t = 0, Eq. (3.14) allows of a family of 2x-periodic solutions, which is two-parametric from A and B 

x = A cos t + B sin t, x" = --A sin t + B cos t 

We make the replacement (x, x*) ---> (,4, B) in (3.12). As a result we obtain 
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A" =-~F* (~t,A,B,t)sint, B" =ixF* (~t,A,B,t)cost 

F* (Ix, A, B,t) .. a + F(Ix,Acost + Bsin t, - Asint + Boost,t) 

According to the corollary of Theorem 5, to each simple root (A*, B*) of the amplitude equation 

2~t 2x 
P(A,B)- ~ F*(O,A,B,t)sintdt=O, Q(A,B)- ~ If (O,A,B,t)costdt=O 

o o 

a(P,Q) 1 7J(A,B)I(A,.B, ) ~ 0 

there corresponds a unique 2x-periodic solution 

x=IA*-g  ! F* (O,A',B',t)sintdt]cost +[B" +ix! F" (O,A*,B',t)eostdt]sint +o(ix) 

of system (3.14). 

4. D E G E N E R A T E  S Y S T E M S  

1. A resonant system. The problem of the rotational motions of a system in the resonant case also 
leads to an investigation of system (3.12). 

Consider the following system, 2n-periodic in t 

y~ = ~tYct(g,y,z.t) (0~ = 1 ..... k) 

z~ =¢01~ +laZl~(g,Y,Z,t), o~1~ =const  ~ = k + l  ..... m) (4.1) 

in which the fight-hand sides are also 2n-periodic with respect to the variable zl~. We will assume that 
system (4 1) is resonant, i e tt~ = p l ~ / q .  . . . .  p -al3g (13 = k + 1, . . .  , m), wherePl313q ~7/(q ~ 0), a13 = const. 
In tillS case, by introducing the new variables ~13 = z13 - (P~/ql~) t (fJ = k + 1, . . . ,  m) we ~ogtain the following 
system, 2rd-periodic in t (l is the least common multiple of the numbers I qk+l I . . . .  , I qm I) 

Y~ = P'Yp(lX, Yl ..... Yk, ~k+l +(Pk+l I qk+l)t ..... ~m +(Pro I qm)t,t) 
(4.2) 

= + zp(it, ..... + (Pk+  / ..... + (p,, / q,,)t,t)] 

( c t = l  ..... k ; l ~ = k + l  ..... m) 

of the form (3.12). According to the corollary of Theorem 5, to each simple root (A*, B*) of the amplitude 
equation 

2~ 2~/ 

J Y(O,A,B+(plq)t, Odt=O, S [a+Z(O,A,B+(plq)t,t)dt=O 
0 0 

there corresponds a unique 2rd-periodic solution of system (4.2). The corresponding solution of  system 
(4.1) has the form 

t 

Ya = A~ +l~I Ya(0,A*, B• +(plq)t,t)dt+o(~t) ( a = l  ..... k) 
0 

t 

Zli =O}~t+B~ +~tJ ZI~(0,A*,B* +(plq)t,t)dt+o(Ix ) ( l ~ - k + l  ..... m) 
0 

2. The case of multiple roots of the amplitude equation. We will assume that in the 2M-periodic system 
(3.12) the amplitude equation (3.11) has a multiple root A*, where 

rank]aI(A)~ = m - k  (4.3) 
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and simple elementary dividers correspond to the root A* in (4.3). In this case, we make the following 
replacement in system (3.12) 

t 
y = A * + I x ° z + ~ l ' ( t )  (0<o~<1) ,  f ( t ) = [  Y(O,A*,t)dt 

0 

As a result we obtain 

z" = Ix{PI(t)[z + IXt-°f(t)] + IxaP2 (t)[z + Ixi-°f(t)]2 + Ixl-o~y / 3lJ. + ..- } 

Pl (t) = ~Y(0, A, t) / aA, 2P 2 (t) = ~2Y(0, A, t) / ~A 2 

where all the partial derivatives are evaluated with Ix = 0, A = A*. 
We will first assume that the matrix Pl(t) is constant. In this case condition (4.3) and the simple 

elementary dividers in (4.3) guarantee the existence of a non-degenerate linear transformation z 
(~, ~!) with constant coefficients, such that, in the new variables, the system takes the form 

g~ = Ix t+o [~-0~ ( g  n,  t) + ~t°-'~a (ix, g ~q, t) + I x ~ - 2 ° ~  (g  ~q, t) + Ix ' - ° ~  (Ix, 6 n,  t)] 

I :~k+ o 1-2o 1 rl'~ =Ix Q.~/rlj +Ix Ho~(ix, g ~, t )+lx Hlp(ix, lj,~l,t) .= 1 i 
( a = l  ..... k ; l ~ = k + l  ..... m) 

where the linear system lq* = Q-q has a unique (zero) 2n-periodic solution. 
Obviously, (4.4) is a system of the form (3.3) withpa = 1 + o, pp = 1. 
Consider the system of k equations 

(4.4) 

J [~.oa(B,O,t)+~oa(B,O,t)]dt = 0 (ct = 1 ... . .  k) (4.5) 
0 

in the k constants B 1, . . . ,  Bk. Suppose B* is a simple Broot of this system. Then, we put ~ = 1/2 in 
(4.4) and, using Theorem 5, we derive the existence in system (4.4) of a unique 2n-periodic solution 

~a = B~ + Ix~ j ['~oa (B*, 0, t) + "~'~a (B*, 0, t)ldt + o(Ix ~) ,  rip = o(Ix) 
0 

with IX ;e 0. Consequently, system (3.12), for fairly small IX ;e 0, has a unique 21t-periodic solution, which 
differs from the generating constant solution A* by a quantity of the order of  IX1/2. 

The case of multiple roots of  the system of equations (4.5) is reduced by the above scheme to an 
analysis of a new system of amplitude equations. In the case when the integrals in (4.5) are identically 
zero, it is necessary to analyse the second derivatives of the function Y(IX, y, t) with respect to Ix and to 
choose ~1/3. As a result, we establish the existence of a periodic solution in O(Ixl/3)--the neighbour- 
hood of the generating solutions A*. Other degenerate cases can be investigated similarly (see also [5-7]). 

In the case of a periodic matrix Pl(t), the above scheme does not undergo any appreciable changes 
if the linear system z' = Pl(t)z has a k-family of 2•-periodic solutions. This occurs, for example, when 
m = k = l .  

5. P E R I O D I C  S O L U T I O N S  IN T H E  t x " - N E I G H B O U R H O O D  OF T H E  
G E N E R A T I N G  S O L U T I O N  ( T H E  G E N E R A L  C A S E )  

In Sections 2--4 we considered limiting cases when the property of the system has a periodic solution, 
and is determined solely by the generating system (Section 2) or only by the perturbations (Sections 3 
and 4). At the same time, an investigation of the case of multiple roots of the amplitude equation (Section 
4, paragraph 2) shows that in the general case all terms on the right-hand side of (1.1) correspond to 
the existence of a periodic solution. Another important feature is the fact that, when investigating non- 
rough cases, the fact that the periodic solution x = q~(t) of the generating system (1.2) belongs to a 
certain family is not always known in advance. These facts enable us to consider the following system 
instead of Eqs (1.1) in the general case 
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y" = P(t)y + Y(y,t) + lzX1(p~w(t)+ y,t), y G II" (5.1) 

obtained by making the change y = x - ~(t) in the neighbourhood of the periodic solution ~t). 
We will assume that the matrix P(t) and the functions Y and X1 are 2~-periodic in t, while the linear 

system 

y" = Pft)y (5.2) 

allows of a k-parametric family from B1,. • . ,  B~ 

y = B~0z(t) + ... + B~Ot(t) = ~p(B, t) (5.3) 

of 2g-periodic solutions. We thereby encompass both the case of a family of  periodic solutions of 
generating system (1.2), and also the case when we know that the solutions x = q~(t) belong to a certain 
family. 

Note that the condition for the family (5.3) to exist is satisfied when there are exactly k simple zero 
characteristic exponents, and the latter condition is constructively verified. This case is investigated below. 

We will make the replacement y ---> ey of an already small parameter e = Ixo (0 < o ~< 1), characterizing 
the smallness of  the deviation of the solutions of systems (1.1) and (1.2) from one another. We obtain 
as a result 

y" = P(t)y + It~'[Yo (Y, t) + eYl (It, y, t)] + Ixt-e IX I (0, q~(t), t) + ~l(t)y + 

+IdafO+X, fix, It, y,t)]; R,O= k aIx ). 

(5.4) 

where k >I 1 (Z e N), the matrix Q(t) and the vector R(t) are calculated for x = q~(t), Ix = 0, while the 
function X2 (Ix, e, y, t) vanishes when e = Ix = 0 and is an order higher than the first in e and Ix. 

We will denote by {z~a(t)} the system of 2n-periodic solutions of the linear system, conjugate with 
system (5.2), and by making the replacement y ---> (~, 11) we reduce (5.2) to a system with constant 
coefficients. Then 

, {  . ]} z,.(t) 
a=l j = l  

~I" =Geq+H(~,g,~,~t) (o~=l ..... k; ~IcR "-~) (5.5) 

and among the eigenvalues of the matrix G there is none equal to il (l ~ 7/). 
We will assume initially that the following conditions are satisfied on the solution ~0(t) 

2 g  m 

I E Xls(O,q~(t),t)zsa(t)dt=O ( a - -1  ..... k) (5.6) 
0 s= l  

which are necessary for a 2x-periodic solution to exist in system (1.1), apart from terms linear in Ix. 
Then, by the transformation 

! m 

~a "~ ~ct +ixl-a~ ~ X~,(O,q~(t),t)z~(t)dt 
0 s=l  

we obtain a system of the form (5.5), in which Xt~ (0, ~(t), t) - 0. This system is of  the type (3.3), and 
the problem of the existence of a periodic solution in it reduces to analysing an amplitude equation. 

Consider the following system of ampfitude equations 

] l a ( B ) "  J ~- i (~#(t)¥j(B,t)~.=z(t) d t = O  ( a = l  .. . . .  k) 
0 s=i 1=1 

(5.7) 

2 g  m 

lot(B) + S y~ Yos(q(B,t) , t )zsa(t)  d t - O  ((z--1 ... . .  k) (5.8) 
0 s--I 
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2K m 

/a(B) + I ~- Rs(t)z,a(t) dt=O (a=l ..... k) (5.9) 
0 s=l  

2z  m 

la (B)+ J • [Yos(O(B),t)+Rs(t)lzm(t)dt=O ( a = l  ..... k) (5.10) 
0 $=I 

System (5.7) is a system of linear algebraic equations and, for a non-zero determinant A, has a unique 
(zero) solution. In this case, assuming 1/~ < o < 1 in (5.5), we arrive, on the basis of Theorem 5, at 
the existence in (1.1) when X > 1 of a unique 2ruperiodic solution 

x = ~o(t) + la~, t ( t )  + o(~t) (5.11) 

If we know that, in the generating system (1.2), the solution ~0(t) belongs to the family q~(A, t) of 
parametersA1, . . . .  Ak, Eqs (5.6) serve to determine the quantities A = A* in the generating solution. 
The sufficient condition for the solution to be continued over IX is A # 0. 

When a simple root B* of system (5.8) exists, we put o -- 1/g. Then, on the basis of Theorem 5, we 
conclude that the following 21t-periodic solution exists in (1.1) when ~. > 1 

x =~o(t)+~t°q~(B*,t)+o(p.°), o =  l / g  (5.12) 

Obviously such a situation is possible both when A # 0 and when A = 0. 
When A # 0, Eqs (5.9) also have a unique, in the general case, non-zero solution B*. When L > 1 

we choose o = 1, and on the basis of Theorem 5, we conclude that the following 2re-periodic solution 
exists in (1.1) 

x = ¢ , ( t )  + I~[V'~ ( t )  + $ ( B * ,  t)]  + o 0 t )  (5.13) 

When ~, = 1 the periodic solution also has the form (5.13), if system (5.10) has the simple solution 
B*. This is possible both when A # 0 and when A = 0. When the solution 9(t) in the generating system 
belongs to the family ~o(A, t) of parameters A1 . . . .  , Ak, Eq. (5.10) acquires the form (5.9), and the 
sufficient condition for the periodic solution to be continued over ~t is A ~ 0. 

We will now assume that conditions (5.6) are not satisfied. In this case we put o = 1/(1 + 2t), and on 
the basis of Theorem 5 we conclude that the periodic solution 

x=q~(t)+~taO(B',t)+o(Ix°), 0-- II(I+~.) (5.14) 

corresponding to the simple root B* of the amplitude equation 

21t m 

S y- [Y0s(O(B,t),t)+ Xls(O,q~(t),t]zsa(t)dt = 0 (a  = l ..... k) (5.15) 
0 i=1 

exists. 

Theorem 6. A single 2n-periodic solution of system (1.1) corresponds to each simple root B* of 
any of the systems of amplitude equations (5.7)-(5.10) and (5.15) provided ~t is sufficiently small. 
Here the periodic solutions in cases (5.7)-(5.10) exist when conditions (5.6) are satisfied and have the 
form (5.11)-(5.13), respectively, a solution of the form (5.13) corresponds to cases (5.9) and (5.10), 
and the generation of all three types (5.11)-(5.13) of periodic solutions simultaneously is possible. 
The periodic solution in the case of (5.15) has the form (5.14), exists, when conditions (5.6) are not 
satisfied, and differs from the periodic solution of the generating system by a quantity of the order of 
~o (a - 1/(1 + k)). 

6. AN I N V E R S E  SYSTEM 

The theory of periodic motions for an inverse system was developed in [8-14]. We develop this theory 
further below. 

1. Motion on a fixed set. The following assertion holds. 
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Theorem 7. Any motion of a 2n-periodic inverse system 

u'=U(u,t), U(u,t+2g)ffiU(u,t), U(u,-t)f-U(u,t); u e R  t (6.1) 

is 2g-periodic or a position of equilibrium. 
In fact, each solution u 1 = ~O(U °, t) is determined by the value u ° of the variable u at the instant of 

time t = 0. The property of invertibility also guarantees the existence, together with the solution ~o(u 0, t), 
of the solution u2 = q~(u °, -t). The existence of one other solution u3 = ~o(u 0, 2n - t) follows from the 
2re-periodicity of system (6.1). Further, we have 

u](O)=u2(O)=u °, um(n)fu3(n)=~(u°,~) 

Consequently, ul(t), u2(t) and ua(t) describe one and the same solution. This solution will be 2n-periodic 
because ul(2g) = u3(0) = u °. In a special case it degenerates into the equilibrium position u*, found 
from the equation U(u*, t) = 0. 

Note. All solutions of autonomous inverse system (6.1) are equilibrium positions. 

Corollaries. 1. In the inverse 2n-periodic system 

u" =IxU(Ix, u,t), U(Ix, u,-t)=-U(Ix, u,t); u c R  i 

with small parameter IX, when Ix ,  0 a 2n-periodic motion is generated from each equilibrium position 
if the equation U(IX, u*, t) has no constant solutions u*. 

2. All motions of the autonomous or 2r~-periodic inverse system 

u'=U(u,v,t), v =V(u,v,t); ueR t, veR" 

which belong, as a whole, to the fixed set M = {u, v : v = 0}, are 2n-periodic or positions of equilibrium. 
3. The linear 2n-periodic system 

x' = P(t)x, P(-t)  =-P( t ) ;  x ¢ R m 

is stable and has only 2~-periodic or constant solutions. 

2. Cesari's method.  Consider the 2n-periodic inverse system 

u'=U(u,v,t)+IxUI(Ix, u,v,t), v'=IxVI(p,u,v,t); u¢R t, VCR n (6.2) 

with fixed set M = {u, v : v = 0} and small parameter IX. When Ix = 0 system (6.2) allows of an/-family 
of 2n-periodic motions 

u---~o(A,t), v=0, ~0"=U00,0,t) (6.3) 

which belong to a fixed set (Theorem 7). We will investigate the question of whether a 2n-periodic motion 
exists in system (6.2) when Ix * 0, which changes into one of the motions (6.3) when Ix = 0. 

Suppose u(Ix, u*, v*, t), v(Ix, u °, v °, t) is the general solution of system (6.2) with initial conditions u °, 
v ° when t = 0. Then, the necessary and sufficient conditions for 2rtk-periodicity of the solution, 
symmetrical about the fixed set, have the form 

os(ix, u~ . . . . .  u~,O ... . .  0,r ,k)=0 ( s = l  ..... n) 

This system is satisfied identically when Ix = 0 and any k e N. Hence, we can represent system (6.3) in 
the form 

f~(u' ,nk)+gg,(IX, u ' , n k ) = 0 ,  fAu ' ,~k) - -  3vs(Ix'u°'t)] (6.4) 

(s = 1 . . . .  , n) and in the case of the root u* of the system of equationsfs(u °, rd¢) = 0 (s = 1 , . . . ,  n), 
which satisfy the condition rank II Ofs/Ou~ll = n, system (6.4) admits of a solution for sufficiently small 
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Ix ;~ 0. The partial derivatives in (6.4) are found from the equations 

d ( " ~ v  s 
-~l '~gJ=v, , (~t ,u ,v , t )+l l ' f f f fv , . ( IX.u .v , t )  ( s = l  ..... n) (6.5) 

with zero initial conditions. Substituting the general solution of system (6.2) into the right-hand side 
of (6.5) and assuming Ix = 0, we obtain 

~us(O,u- O,t ) 2x 
~lx = [" vls(O'u*'O't)dt (s = 1 ..... n) (6.6) 

o 

Consequently, the following theorem holds. 

Theorem 8. To each root A* of the amplitude equation 

zk 

I(A)a S Vl(0,q~(A,t),0,t)dt = 0 
0 

for which rank II 3I(A*)/~A* II = n, there corresponds a 2nk-periodic solution, symmetrical with respect 
to the fixed set M 

f 

v=p.dj(t)+o(Ix), dj(t)= SVl(O,q~(A*,t),t)dt 
o 

(the asterisk denotes a calculation with IX = 0, u = ~o(A*, t) of system (6.2). 

Notes. 1. It is obvious that the conditions of Theorem 8 can only be satisfied when l/> n. When I > n, Theorem 
8 establishes the existence of an (I - n)-family of 2nk-periodic motions. 

2. Theorem 8 establishes the existence of periodic motions in the la-neighbourhood of the fixed set. 
3. In Cesari's method [15, 16] the case U(u, v, t) --- 0 is considered. 

3. A system of standard form. Consider the inverse 2nk-periodic system 

u'=pOl(p,u,v,t), v'=V(u)+pVl0t, u,v,t); u e R  t, v c R  ~ (6.7) 

with fixed set M = {u, v : v = 0} and small parameter Ix. We will assume that the right-hand sides are 
also 2n-periodic in v. 

When Ix = 0, system (6.7) allows of a family of solutions, symmetric about M 

u = A, v = V(A)t (6.8) 

Consider those of the solutions (6.8) which satisfy the conditions 

vs(A)=ps/q.,.+ixOts; ps~7/, qs¢l~l, Cts=COnSt (s=l ..... n) (6.9) 

for which we make the replacement 

uj=Aj-I-~j ,  vs=(ps /qs) t+rls  ( j = l  ..... l; s = l  ..... n) 

As a result we obtain the system 

6" = IXUI(Ix, A + F:,(P/ q)t +'q,t) (6.10) 

.q" = p(A~+ H(A,l~)+ix[a + Vl(ix, A +~(p/ q)t +.q,t ) 

(H are terms non-linear in 6) with right-hand sides that are 2rtq-periodic in t, where q is the least common 
multiple of  the numbers qa, • • •, qn. 
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Suppose rank P = k ~< n. Then numbers Xlv . . . .  Xnv, (v = k + 1 , . . . ,  n) exist such that 

~lvPlj + .... +xnvPnj = 0  ( j = l  ..... l; v = k + l  ..... n) 

Hence, by means of  a linear transformation with constant coefficients we can always reduce the last 
n - k equations to a form in which, when ~t = 0, there are no terms linear in ~. We now make the 
replacement (~, r h . . . . .  ~k, rlk+l, • • •, TI~) ---> (~t°~, Ixarh . . . .  , IxaTIk, rlk+l, • • •, rh),  1/2 < o < 1. Then, 
Eqs (5.10) take the form 

~. ~. Ix l -ouI  (]./, A + B°~,  ~ t + Ix°r11 ..... P k  t + ~o ,q , ,  P*+L t + rl,+l ..... P ~  t + tin, t) 
ql qk q~+l qn 

l 
ri~ = Y. pxj(A)~j + ~t -°  Hx(A,l~°~)+btl-°[a~ + V;z(...)] (k = 1 ..... k) (6.11) 

j = l  

~ = Hv(A, ix°,~)+ix[av +Vmv(...)] (v = k + l  ..... n) 

(the arguments in square brackets in the last two groups of equations are clear from the form of (6.10) 
and (6.11)). Now, using the necessary and sufficient conditions [9] for a 2nq-periodic symmetric solution 
to exist and employing the same arguments for (6.11) as were used in paragraph 2 of  Section 6, we 
arrive at the conclusion that the following theorem holds. 

Theorem 9. In the resonance case (6.9) for sufficiently small IX # 0 in system (6.7) an ( l -  n + k) family 
o f / -  n + k quantities f romA1, . . .  ,An exists, symmetrical about the fixed set M of  2nq-periodie solutions 
on the torus 

t 

u = A + IX] U l (0, A, (p I q)t, t)dt + o(bt), 
0 

t 

v = V(A)t + ~t S V~ (0, A, (p I q)t, t) + o(l.t ) 
0 

if 

I v (A) --- ? [a v + V~v (0, A, (p I q)t, t)]dt = 0 
o 

rank P = k, rank113I(A) / ~A II, -- n - k 

(V = k + l  ..... n) 

(6.12) 

(the asterisk denotes a calculation for values of A which satisfy Eqs (6.12)). 

Corollary. If rank P = n, an l-family of 2rtq-periodic symmetrical solutions exists in the resonance 
case (6.9) 

4. The existence of  an l-family of  periodic solutions. Consider the 2n-periodic inverse system 

u" = IxUi(l.t,u,v,t), v" = V(u,v,t)+IxVI(Ix, u,v,t); 

with fixed set M. When Ix = 0 we have 

u = A(const), v" = V(A, v,t) 

u e R t, v ~ R n (6.13) 

(6.14) 

We will assume that the equation for v in (6.14) admits of an odd 2n-periodic solution v = q~(A, t), 
~(A, - t )  = --~(A, t) and we make the following replacement: u = A + p, v = ¢~(A, t) + q. We then 
obtain 

p" = IXU; (Ix, A + p, •(A, t) + q, t) (6.15) 

q" = B_(A,t)q + B+ (A,t)p + Ql(A,p,q,t) + IxVl(Ix, A + p,~(A,t) + q,t) 

where the plus (minus) subscript denotes a matrix with even (odd) functions, while QI is a function 
that is non-linear in p and q. 
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We first consider the linear system 

q" = B_(A,t)q + B.(A,t)et (or = const) (6.16) 

When ot = 0, system (6.16) is inverse and has only even 2x-periodic solutions (Corollary 3 of  Theorem 
7), which form a fundamental  system q+(t, x); q÷(t, x) = In is the identity matrix of the initial conditions 
(when t = x). Hence, when ~t ~ 0 the odd solution of system (6.16) has the form 

t 

q-(t) = .[ q+(t,1;)B.(A, t) ot dl; 
0 

According to the results obtained previously [9] the condition rank q - ( n )  = n is sufficient for the 
whole family of A periodic solutions u = A, v = O(A, t) of the generating system to be continued over 
the parameter  g. In this case we have 

t 

u= A+g[p°+0(t)]+o(Ix), O(t)=.[Ui(O,A,~b(A,t),t)dt 
0 

t 

v = d:(A, t) + Ix[ q* (t, x)IB. (A, x)[p ° +0(~)1 + V] (0, A, O(A, x), x)}dx + o(g) 
0 

(6.17) 

The constants p° are chosen from the condition for the integral for v to be equal to zero when t = 
Jr. The latter is always possible when rank q-(n) = n. 

Theorem 10. For sufficiently small Ix ~ 0 system (6.13) admits of an l-family of A symmetric 2n-periodic 
motions (6.17) if rank q-(lr) = n. 

Note. When I.t = 0, system (6.13) can have a periodic solution of the form (6.14) only for fixed A = A*. In this 
case, the condition rank q-(n) = n guarantees the existence of only some motions (when A = A*) of the form (6.17). 

Example. Assume that the second-order 2~-periodic system 

x '=lxX(g,x ,y , t ) ,  y '= x+gY(g ,x , y , t  ) (6.18) 

is invertible with a fixed set {x,y : y = 0}. When g = 0 we have a unique (zero) periodic solution. The matrix q-(t) 
consists of one element q-(t) and is calculated by integrating system (6.18) with p. = 0 with initial conditions x ° = 
1,y ° = 0. We have q-(t) = t, q-(~) = n ~ O. Consequently, in the neighbourhood of zero, system (6.18) has a unique 
2n-periodic solution 

x=l.t x°+~X(O,O,O,t)dt +o(g), Y=BS xo+Sx(o,o,O,v)dv+Y(O,O,O,'C) +o(g) 
OL o J 

7ri rtx° + X(O,O,O,v)dv+ Y(O,O,O,x) =0 
o LO J 

7. S Y S T E M S  C L O S E  TO I N V E R S E  S Y S T E M S  

Consider the 2n-periodic system 

U ' =  U(u, v, t) + l.LU| (IX, u, v, t) (7.1) 

v '=V(u ,v , t )+BVt(B ,u ,v , t ) ;  u ~ R  I, v E R  n ( l>~n)  

We will assume that when g = 0, system (7.1) is inverse with a fixed set M = {u, v : v = 0} and admits 
of a symmetrical 2~-pedodic solution 

u = q~(t), v = O(t); q~(-t) = ~o(t), O(-t) =-O(t) (7.2) 

while the perturbations gU1, ~ 1  do not belong to the class of inverse systems. We will investigate the 
problem of the 2x-periodic solutions of system (7.1) when g ~ 0 when the generating system (with 
g = 0) is rough for perturbations of the class of  inverse systems. 
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1. Roughness in the class o f  perturbations of  general form. We make the following replacement in (7.1): 
u = q~(t) + p, v = d~(t) + q. As a result we obtain 

p" = A_ (t)p + A+(t)q + P(p, q, t) + IxU, (IX, q~(t) + p,~(t)  + q, t) (7.3) 

q" = B+ (t)p + B_ (t)q + Q(p, q, t) + IxV l (Ix, ~o(t) + p,t~(t) + q, t) 

where the plus (minus) subscript denotes a matrix with even (odd) functions and P and Q are terms 
non-linear in p and q. 

The fundamental matrix of solutions of the approximation, linear in p and q, when Ix = 0 has the 
form [9] 

(/j is the identity j-matrix). Moreover, if q+(2g) has no eigenvalues equal to unity, then S(2g) has exactly 
l - n eigenvalues [14], equal to unity. The following theorem therefore holds. 

Theorem 11. If we have I = n, det(q+(2g) - In) ~ 0 in system (7.1), then, for sufficiently small Ix ~ 0 
in (7.1) a unique 2~-periodic solution exists, which is invertible into the symmetric solution (7.2) when 
I x = 0 .  

2. The case I > n. We will assume, as before, that the matrix q+(2n) has no eigenvalues equal to unity. 
Then, in the matrix S(t) in the last n columns, there are no 2g-periodic solutions [14], while the k-family 
(k = l - n) of  2g-periodic solutions 

pj = q~ (B,t)  = Biq~l (t) +... + Bt, cp~ k (t) ( j  = 1 ..... 1) (7.4) 

q,, = v~(B,t)= B~q~tft)+...+B~q]kft) (s =l ..... n) 

is symmetric with respect to the set {p, q : q = 0}. If we introduce a small parameter e = Ixo into system 
(7.3) by means of the replacement (p, q) ~ (ep, eq) and use the system {0~,(t), Z~v(t)} of 2n-periodic 
solutions of  the conjugate linear system, the equations for B1 . . . . .  Bk have the form 

B" v =e.~'Fv(e,p,q,t)+e.-IbtFiv(Ix, q~(t)+Ep, dp(t)+eq, t) ( v =  1 ..... k) (7.5) 

F v - e  Pa(l~p, Eq,t)O~v(t)+ ~, Ql~(Ep, Eq,t)X;v(t) 

l 
Fly = )". Ula (Ix, q~(t) + Ep, ~(t)  + eq, t)0~v (t) + 

0t=l 

+ ~. Vip(g,q~(t)+~p, dy(t)+eq, t)Z~v(t ) ( ~  N, ~ >  !) 
I;=1 

Further analysis requires the setting up of the amplitude equation and the determination of  its simple 
roots. The two cases of Section 5 are possible here, We will consider only one of  these cases below. 

Suppose solution (7.2) belongs to the k-family or 2~-periodic solutions u = q~(A, t), v = O(A, t). In 
this case the amplitude equation has the form 

2~ 

E (0,q~(A,t), ¢¢(A,t),t)dt = 0 (7.6) 
0 

Theorem 12. For sufficiently small Ix ¢ 0, to each simple root of amplitude equation (7.6) there will 
correspond a unique 2~-periodic solution of system (7.1), which differs from the symmetrical solution 
by a quantity O(Ix). 

Note. Amplitude equation (7.6) corresponds to case (5.7). It is obviously easy to write amplitude equations in 
the cases corresponding to (5.8)-(5.10) also. 
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3. The case rank  q-(~r) = n. In this case in the part of system (7.3) that is linear inp and q when Ix = 0 
there is an (l-n)-family of 2n-periodic solutions, symmetric with respect to the set {p, q : q = 0}. When 
rank p-(x) = n we arrive at case 2. If rank p-(x) × < n ,  this linear system also has an (n - ×)-family 
of 2n-periodic solutions symmetric with respect to the set {p, q : q = 0}. Using the periodic solutions 
of the conjugate linear system, we arrive at a system of the form (7.5) in which v changes from 1 
to 1 - × .  

Hence, only when 1 = n can the inverse generating system be rough in the sense of the property of 
having periodic motion if perturbations of general form are considered. Note also that the most 
degenerate cases, when the inverse generating system is not rough even for perturbations from the class 
of inverse systems, is investigated similarly for perturbations of general form, like the cases considered 
here. Here it is necessary to use well-known results [14] on the investigation of inverse systems and 
also those described in Section 5. These cases are omitted due to shortage of space. 

This research was supported financially by the Russian Foundation for Basic Research (96-15-96051 
and 97-01-00538). 

R E F E R E N C E S  

1. POINCARI~, A., Selected Papers, Vol. 1, New Methods of Celestial Mechanics. Nauka, Moscow, 1971. 
2. MALKIN, I. G., Some Problems of the Theory of Non-linear Oscillations. Gostekhizdat, Moscow, 1956. 
3. LYAPUNOV, A. M., The series proposed by Hill for representing the motion of the Moon. Collected Papers, Vol. 1. Izd. 

Akad. Nauk SSSR. Moscow, 1954. 
4. BOGOLYUBOV, N. N. and MITROPOL'SKII, Yu. A., Asymptotic Methods in the Theory of Non-linear Oscillations. Nauka, 

Moscow, 1974. 
5. PROSKURYOV, A. P., PoincaN's Method in the Theory of Non-linear Oscillations. Nauka, Moscow, 1977. 
6. KOPNIN, Yu. M., Oscillations of autonomous one-degree-of-freedom systems, lnzh. Zh., 1962, 2(3), 3--8. 
7. KOPNIN, Yu. M., Periodic oscillations of non-linear non-autonomous n-degree-of-freedom systems. Inzh. Zh., 1965, 5(2), 

217-226. 
8. I-IEINBOCKEL, J. H. and STRUBLE, R. A., Periodic solutions for differential systems with symmetries. J. Soc. Indust. AppL 

Math., 1965, 13, 2, 425--440. 
9. TKHAI, V. N., Symmetric periodic orbits in the many-body problem. Resonance and the parade of planets. Prikl. Mat. Mekh., 

1995, 59(0, 38-50. 
10. TKHAI, V. N., Symmetric periodic orbits of the many-body problem. Resonance and the parade of planets. Pr//d. Mat. Mekh. 

1995, 59(3), 355-365, 
11. TKtLM, V. N., Symmetric periodic orbits of the third kind in the N-planet problem. Resonance and the parade of planets. 

Dokl. Ross. Akad. Nauk, 1996, 350(1), 52-55. 
12. IKHAI, V. N., Invariant sets and symmetric periodic motions of reversible mechanical systems. Pn'k/. Mat.Mekh., 1996, 60(6), 

959--971. 
13. TK.HAI, V. N., Symmetric periodic orbits and the restricted three-body problem. Kosmich. lssled., 1997, 35(2), 164-171. 
14. TKHAI, V. N., The continuation of the periodic motions of a reversible system in non-rough cases. Pr/k/. Mat. Mekh., 1998, 

62(1), 56-72. 
15. CESARI, L.,Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, 3rd edn. Springer, Berlin, 1971. 
16. HALE, J. K., Oscillations in Nonlinear Systems. McGraw-Hill, New York, 1963. 

Translated by R.C.G. 


